Some Generalized Trigonometric Sine Functions and Their Applications

نویسندگان

  • Dongming Wei
  • Yu Liu
  • Mohamed B. Elgindi
چکیده

In this paper, it is shown that D. Shelupsky’s generalized sine function, and various general sine functions developed by P. Drábek, R. Manásevich and M. Ôtani, P. Lindqvist, including the generalized Jacobi elliptic sine function of S. Takeuchi can be defined by systems of first order nonlinear ordinary differential equations with initial conditions. The structure of the system of differential equations is shown to be related to the Hamilton System in Lagrangian Mechanics. Numerical solutions of the ODE systems are solved to demonstrate the sine functions graphically. It is also demonstrated that the some of the generalized sine functions can be used to obtain analytic solutions to the equation of a nonlinear spring-mass system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0 30 70 65 v 3 2 A pr 2 00 4 Generalised definitions of certain functions and their uses

Generalised definitions of exponential, trigonometric sine and cosine and hyperbolic sine and cosine functions are given. In the lowest order, these functions correspond to ordinary exponential, trigonometric sine etc. Some of the properties of the generalised functions are discussed. Importance of these functions and their possible applications are also considered. PACS No.: 02.30.Hq, 02.30.Gp...

متن کامل

X iv : m at h - ph / 0 30 70 65 v 2 6 A ug 2 00 3 Generalised definitions of certain functions and their uses

Generalised definitions of exponential, trigonometric sine and cosine and hyperbolic sine and cosine functions are given. In the lowest order, these functions correspond to ordinary exponential, trigonometric sine etc. Some of the properties of the generalised functions are discussed. Importance of these functions and their possible applications are also considered. PACS No.: 02.30.Hq, 02.30.Gp...

متن کامل

Generalized solution of Sine-Gordon equation

In this paper, we are interested to study the Sine-Gordon equation in generalized functions theory introduced by Colombeau, in the first we give result of existence and uniqueness of generalized solution with initial data are distributions (elements of the Colombeau algebra). Then we study the association concept with the classical solution.

متن کامل

Double Trigonometric Series and Zygmund Classes of Functions with Two Variables (communicated by Hüsein Bor)

In the present paper, we generalize Zygmund classes of functions with two variables defined by Móricz by means of modulus of continuity, and give the necessary and sufficient conditions for double sine, sine-cosine, cosinesine and double cosine series so that their sums belong to the generalized Zygmund classes. Some new results of Fülöp [1] and [2] on double trigonometric series are extended.

متن کامل

Transient-Time Fractional-Space Trigonometry and Application

In this work, we use the generalized exponential function in the fractional-order domain to define generalized cosine and sine functions. We then re-visit some important trigonometric identities and generalize them from the narrow integer-order subset to the more general fractional-order domain. It is clearly shown that trigonometric functions and trigonometric identities in the transient-time ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012